 Instructors: 1. Dr. Ghada Al-Afifi 2. Dr. Rola Alseidi 3. Dr. Abdallah Soboh 4. Mr. Mohammad Al Momani 	Philadelphia University	Academic Year: 2023-2024 Semester: Fall Date: 16/12/2023 Course: Linear Algebra (1) Duration: 60 Min.
4. Mr. Mohammad Al-Momani	Faculty of Science Department of Mathematics	
	Midterm Exam	

Name:

I.D. Number:

Question One: [12 points] Choose the correct answer and fill your answers in the table provided.

Question	01	02	03	04	05	06	07	08
Answer								

1. If det(A) = 5 and $det(B^{-1}) = 2$, then $det(AB)^{-1} =$

(A) 10 (B) -10 (C) $\frac{5}{2}$ (D) $\frac{2}{5}$ (E) None.

2. Let A be 3×3 matrix with det(A) = 2. Then det(2adj(A)) =

(A) 16 (B) 10 (C) 32 (D) 8 (E) None
3. Let
$$A = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 2 & -1 \\ 8 & -1 & 6 \end{bmatrix}$$
. Then the cofactor $C_{21} =$
(A) -13 (B) 14 (C) 13 (D) -14 (E) None
4. If $A = \begin{bmatrix} 3 & 6 & 1 \\ -3 & 4 & 5 \end{bmatrix}$, then $tr(A + A^T) =$

 $\begin{bmatrix} 4 & 2 & 3 \end{bmatrix}$ (A) 5 (B) 20 (C) 10 (D) 18 (E) None

Page 1 of 4

5. Let A, X be square matrices of the same size. If X is invertible, then $(XAX^{-1})^4 =$

(A) C $(C) X^{-1}A^{4}X (D) X^{4}A^{4}X^{-4} (E) X^{-4}A^{4}X^{4}$ $(E) X^{-4}A^{4}X^{4} (E) X^{-4}X^{4}$ **(B)** −1 (A) 2 **(C)** 0 **(D)** 1 (E) -27. One of the following matrices is in row-echelon form :

 (A) $\begin{bmatrix} 1 & 0 & 4 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$ (B) $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$ (C) $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{vmatrix}$
(D) $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (E) None 8. If $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 3$, then $\begin{vmatrix} -a & -b & -c \\ 2d & 2e & 2f \\ 3a+g & 3b+h & 3c+i \end{vmatrix} = :$ (A) -6 (B) -18**(D)** 18 (E) None

Question Two: [6 points] Circle True or False. Read each statement carefully before answering.

1. True False The transpose of an upper triangular matrix is an upper triangular matrix.

- 2. True False For two square matrices A, and B, $\det(A + B) = \det(A) + \det(B)$.
- 3. True False The matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ has no main diagonal.

4. True False For all square matrices A and B of the same size, $(A + B)^2 = A^2 + 2AB + B^2$.

- 5. True False If A is a singular $n \times n$ matrix, then the system AX = 0 has infinitely many solutions.
- 6. True False Let A be a square matrix, then AA^T is symmetric.

Question Three: [4 points] Let $B = \begin{bmatrix} 1 & 6 \\ 0 & 3 \end{bmatrix}$

1. Find B^{-1} .

2. Find the matrix A such that $(A^T + I_2) = B^{-1}$.

Question Four: [4 points] Use Cramer's rule to solve the system

$$2x - y = 3$$
$$x + 2y = -1$$

Question Five: [4 points] Consider the following linear system

$$\begin{aligned} x + y &= 1 \\ k^2 x + y &= k \end{aligned}$$

Find all values of k such that the system.

1. has infinitely many solutions.

2. has a unique solution.

Question Six: [2 points] If $A^2 + 2A = I$, show that A is invertible.